Anterograde transport and secretion of brain-derived neurotrophic factor along sensory axons promote Schwann cell myelination.
نویسندگان
چکیده
The neurotrophin brain-derived neurotrophic factor (BDNF) inhibits Schwann cell (SC) migration and promotes myelination via the p75 neurotrophin receptor (NTR). Despite these recent findings, the expression, localization, and mechanism of BDNF action has yet to be determined. Here we demonstrate that the sensory neurons of the dorsal root ganglion (DRG) are a major source of BDNF during postnatal development. The expression of BDNF is initially elevated before myelination and decreases dramatically after the onset of myelination. BDNF expression is controlled in part by transcriptional regulation and the increased expression of the truncated TrkB receptor on SCs. To investigate the possible mechanism of BDNF transport and release, multicompartment Campenot chambers were used. DRG neurons transported and secreted endogenous BDNF along the surface of axons in anterograde fashion. In an attempt to enhance myelination by SCs, DRG neurons were transduced with an adenovirus to overexpress BDNF. BDNF was transported and secreted along the axons and enhanced myelination when compared with control cocultures. Together, the events surrounding the expression, localization, and mechanism of BDNF action in DRG neurons may hint at potential therapeutic implications to efficiently promote remyelination.
منابع مشابه
Pii: S0306-4522(00)00079-8
Glial cell line-derived neurotrophic factor is one of the most potent motoneuron survival factors yet identified. Although retrograde transport of trophic factors to the cell body is thought to be an important process in motoneuron survival, the transport pathways that lead to interaction of glial cell line-derived neurotrophic factor with its receptors is not known. We have used a double ligat...
متن کاملGlial cell line-derived neurotrophic factor alters axon schwann cell units and promotes myelination in unmyelinated nerve fibers.
Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the development and maintenance of a subset of dorsal root ganglion sensory neurons. We administered high-dose exogenous recombinant human GDNF (rhGDNF) daily to adult rats to examine its effect on unmyelinated axon-Schwann cell units in intact peripheral nerves. In rhGDNF-treated animals, there was a dramatic prolife...
متن کاملRapid axoglial signaling mediated by neuregulin and neurotrophic factors.
During peripheral nervous system development, Schwann cells are precisely matched to the axons that they support. This is mediated by axonal neuregulins that are essential for Schwann cell survival and differentiation. Here, we show that sensory and motor axons rapidly release heparin-binding forms of neuregulin in response to Schwann cell-derived neurotrophic factors in a dose-dependent manner...
متن کاملCo-cultures with stem cell-derived human sensory neurons reveal regulators of peripheral myelination
See Saporta and Shy (doi:10.1093/awx048) for a scientific commentary on this article.Effective bidirectional signalling between axons and Schwann cells is essential for both the development and maintenance of peripheral nerve function. We have established conditions by which human induced pluripotent stem cell-derived sensory neurons can be cultured with rat Schwann cells, and have produced for...
متن کاملAnterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27.
The neurotrophin receptors TrkA, TrkB, and TrkC are localized at the surface of the axon terminus and transmit key signals from brain-derived neurotrophic factor (BDNF) for diverse effects on neuronal survival, differentiation, and axon formation. Trk receptors are sorted into axons via the anterograde transport of vesicles and are then inserted into axonal plasma membranes. However, the transp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 28 شماره
صفحات -
تاریخ انتشار 2007